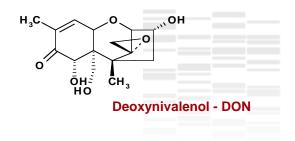
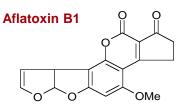
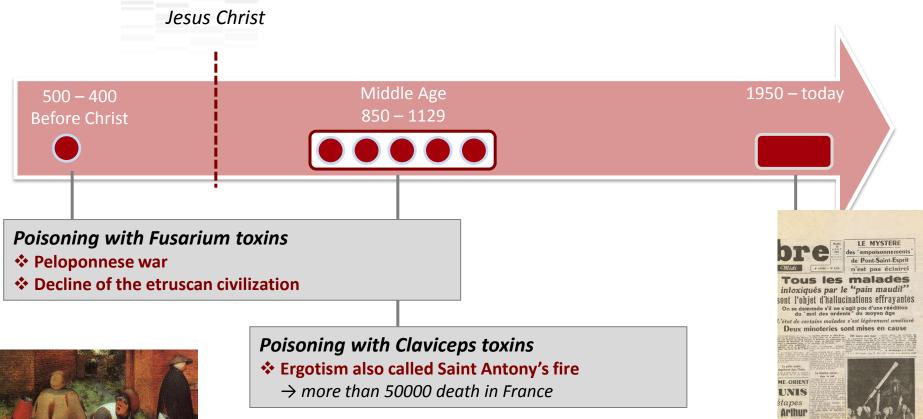
Multiexposition aux mycotoxines : analyse des interactions


Isabelle P. OSWALD Imourana ALASSANE-KPEMBI Philippe PINTON


INRA - ToxAlim -Toulouse, FRANCE Research Center in Food Toxicology Institut National de la Recherche Agronomique

ALIMENTATION AGRICULTURE ENVIRONNEMENT


Mycotoxins

- Fungal secondary metabolites that exert toxic effects on animals and human
- More than 1000 mycotoxins have been described
- The chemical structure of mycotoxins is very diverse
- Chemical structure and toxic properties of mycotoxins are conserved during both storage and processing/cooking of food or feed

Mycotoxins, a very old problem

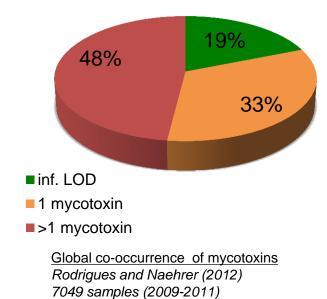
Other poisoning with mycotoxins

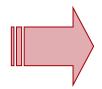
- **❖** Balkan endemic nephropathy Ochratoxin A?
- Acute hepatitis Aflatoxins

Mycotoxins: a global threat

North Europe AF 0%; ZEA 3%; **DON 57%;** FB 0%; **OTA 50% North America Central Europe** AF 20%: ZEA 34%: **North Asia** AF 6%; ZEA 20%; **DON 79%; FB 65%;** OTA 35% AF 11%; **ZEA 59%**; **DON 54%;** FB 29%; **OTA 41% DON 68%;** FB 40%; OTA 16% **South Europe** South-East Asia AF 16%; ZEA 17%; **AF 55%;** ZEA 44%; **DON 74%; FB 81%;** OTA 30% DON 30%; **FB 64%;** OTA 33% **Central America** Middle East AF 20%; ZEA 0%; AF 16%; ZEA 14%; South Asia **DON 80%; FB 100%;** OTA 0% DON 37%; FB 39%; **OTA 67% AF 79%;** ZEA 40%: DON 18%; FB 66%; OTA 63% **Africa South America** AF 85%; ZEA 44%; AF 47%; ZEA 51%; DON 52%; FB 80%; OTA 86% DON 9%; **FB 87%;** OTA 9% Oceania AF 7%; ZEA 17%; DON 19%; FB 6%; OTA 11%

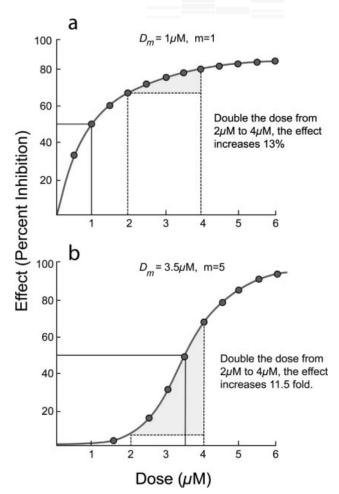
60-70% of raw materials are contaminated


Mycotoxins: a health issue in both developing and developed countries


- Global survey indicate that 60-70% of the world crop production is contaminated by mycotoxins (Schatzmayr & Streit, 2013)
- In France, mycotoxin levels can exceed the health based guidance values (second French total diet study, Sirot et al., 2013)
- In 2014, the high level of mycotoxins observed in French crops lead the authorities to request a temporary derogation from the maximum limit in maize (EFSA J, 2014)
- Climate influences mycotoxin levels. What will be the consequences of the global warming?

The reality of mycotoxin co-contamination

- Fungi produce several mycotoxins simultaneously
- Food may be contaminated by several fungi
- Meals are composed of multiple raw materials


Co-contamination by several mycotoxins is the RULE, not the exception

Most studies have investigated the effect of mycotoxins when present separately

It is crutial to investigate the effect of mycotoxin mixtures

Experimental designs in mycotoxin mixture studies

- Classically, a two-step approach is recommended for toxicological interaction studies (Suhnel, 1996)
- First the dose-effect relationship analysis of each toxic individually has to be done to allow the prediction of a non-interactive combination effects.
- Then the actual experimental mixture effect data are compared to the predicted ones to draw a conclusion of additive combination (no interaction), synergistic or antagonistic.

Many studies addressing mycotoxins interaction are difficult to interpret, due to the lack of doseresponse experiments.

The different models to study the toxicity of mycotoxins mixtures

3 types of approaches to study the interactions

- Experiments lacking of dose-response curve (no conclusion about the interaction)
- Experiments with factorial plan (conclusion about the interaction but no characterization on the interaction)
- □ The isobologram and the combination index (conclusion about the interaction and characterization of the type of interaction)

Importance of the dose response analysis: an example

Toxicity		Mycotoxin A	Mycotoxin B	Mixture
Cytotoxic effect	Measured value	30 ± 4	30 ± 4	40 ± 5
(versus control)	Theorical value	-	-	60 ± 8

Additivity model

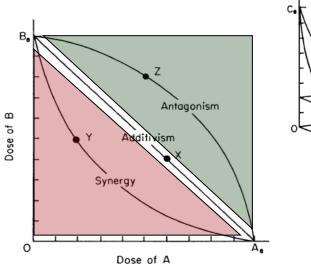
Toxic effect (mixture) = Toxic effect (mycotoxin 1) +Toxic effect (mycotoxin 2)

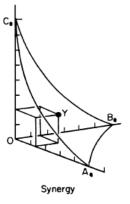
Measured value < Theorical value

Antagonism between Mycotoxin A and B

		FB1 (1μM)	FB1 (1μM)	FB1 (2μM)
Cytotoxic effect	Measured value	30 ± 4	30 ± 4	40 ± 5
(versus control)	Theorical value	-	-	60 ± 8

Measured value < Theorical value Antagonism between FB1 and FB1!!!


Just a simple dose effect

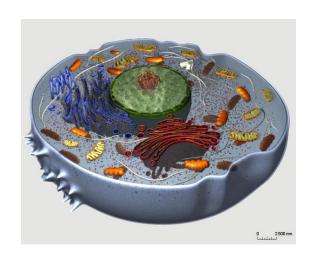


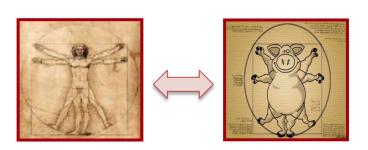
The isobologram and the combination index

<u>Principle:</u> (i) determine the concentrations of toxins, alone and in combination, required to obtain a given toxic effect and (ii) compare theses concentration with the one that would give a theoretical additive effect.

<u>Graphical approach:</u> Isobologram

<u>Mathematical approach:</u> combination index


$${}^{n}(CI)_{x} = \sum_{j=1}^{n} (D)_{j} / (D_{x})_{j} = \frac{(D_{x})_{1-n} \{ [D]_{j} \sum_{j=1}^{n} [D] \}}{(D_{m})_{j} \{ (fax)_{j} / [1 - (fax)_{j} \}^{1/mj}}$$


Combination index	Type of interaction		
Below 0.9	Synergism		
0.90 – 1.10	Additive		
Above 1.10	Antagonism		

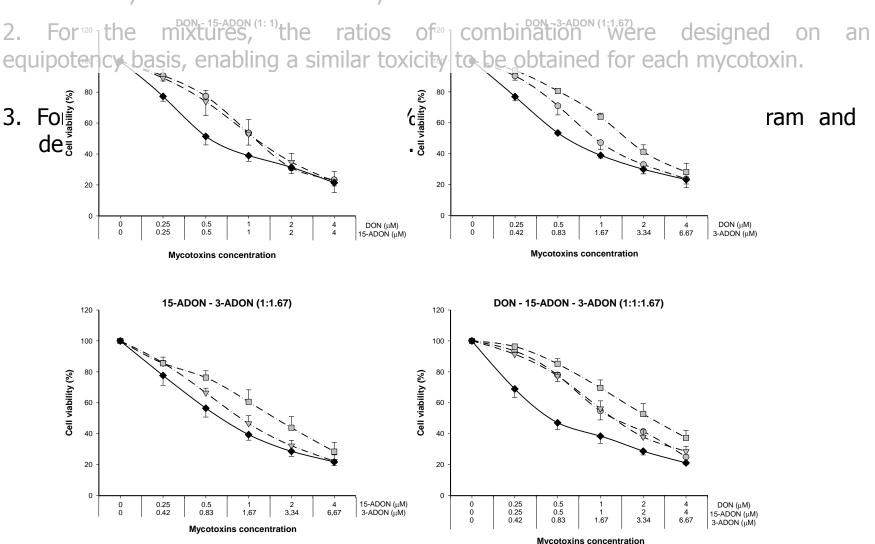
Determination of the type of interaction & its amplitude

Interaction between deoxynivalenol and other type B trichothecenes: analysis on intestinal cells

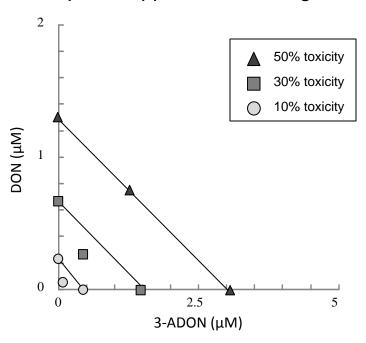
Proliferating intestinal epithelial cells

48 hours-exposure to graded levels of toxin

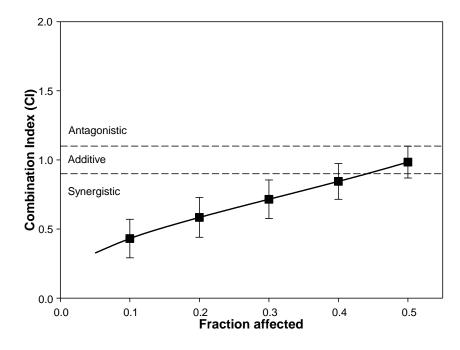
- DON, 3-ADON, 15-ADON, NIV : $0 7\mu M$
- FX $0 0.12 \mu M$


Cytotoxicity assays

(MTT test, mitochondrial activity)


Interaction between DON and other type B trichothecenes

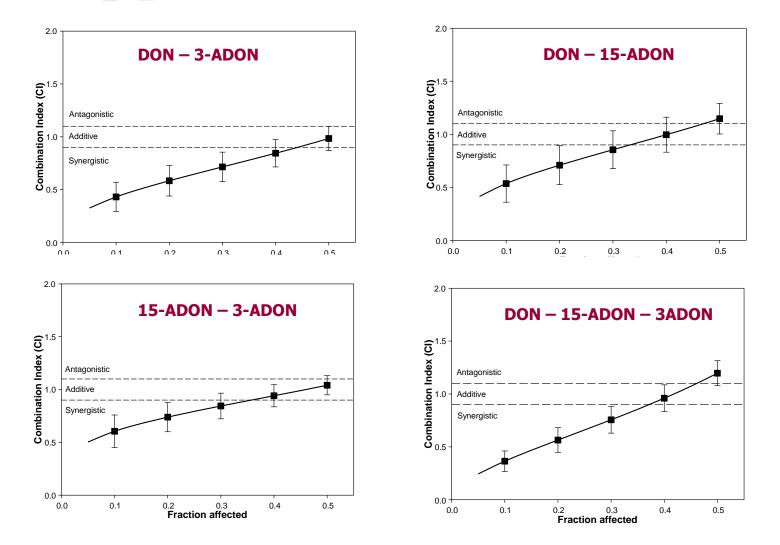
1. We performed dose-response experiments for single mycotoxins and their binary or ternary mixtures simultaneously.



Combined effect of DON and 3-acetyl DON

Graphical approach: Isobologram

Mathematical approach: Combination index



The type of interaction depends on the dose. At low doses synergy is observed.

Combined cytotoxicity of Type B trichothecenes

Magnitude of the synergy

DRI (dose reduction index): ratio between the concentration of mycotoxins when used alone or in combination to achieve the same toxicity level.

Magnitude of the synergy

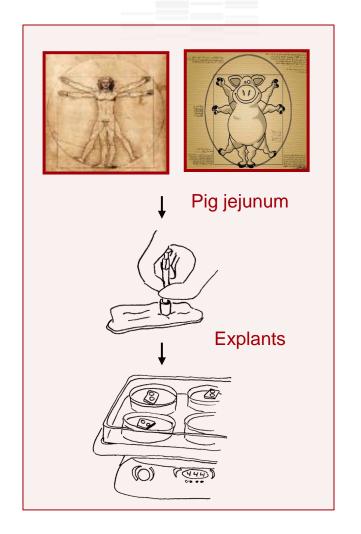
Mycotoxin	Ratio	10% cytotoxicity		30% cytotoxicity	
my cocomin		CI	DRI	CI	DRI
DON	1.1	0.54	4.2	0.85	2.5
15-ADON	1:1		3.4		2.2

Compared to single mycotoxins, the toxicity of the TCT mixture could be obtained with 10-fold less toxin

Combined cytotoxicity of TCT

	Type of interaction at low doses		
Mycotoxin association	Human Caco-2 cells Alassane-Kpembi <i>et al.</i> , 2013		
DON & 3-ADON	Synergy		
DON & 15-ADON	Synergy		
15-ADON & 3-ADON	Synergy		
DON & NIV	Synergy		
DON & FX	Synergy		
NIV & FX	Additivity		

Combined cytotoxicity of TCT Comparison between different cell lines


	Type of interaction at low doses			
Mycotoxin association	Human Caco-2 cells Alassane-Kpembi <i>et al.</i> , 2013	Porcine Ipec-1 cells Alassane-Kpembi <i>et al.,</i> 2015		
DON & 3-ADON	Synergy	Antagonism		
DON & 15-ADON	Synergy	Synergy		
15-ADON & 3-ADON	Synergy	Synergy		
DON & NIV	Synergy	Synergy		
DON & FX	Synergy	Antagonism		
NIV & FX	Additivity	Additivity		

- In different cell line the type of interaction is similar
- At low concentrations, synergy is the main type of interaction observed

Interaction between deoxynivalenol and other type B trichothecenes: analysis on intestinal explants

Porcine intestinal explants

4 hours-exposure to graded levels of DON & NIV

Analysis of the expression of cytokines (IL-1 α , IL-1 β , IL-8, IL-17a, IL-22) by qPCR

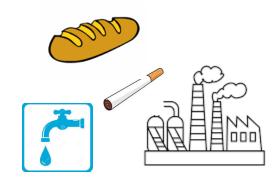
Combined cytotoxicity of trichothecenes Inflammatory response of DON & NIV

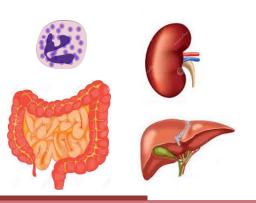
Cytokino	Interaction at low doses			
Cytokine	Туре	Magnitude (DRI)		
IL-1α	Synergy	3.58		
IL-1β	Synergy	15.06		
IL-8	Synergy	22.6		
IL-17A	Synergy	7.75		
IL-22	Synergy	15.27		

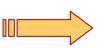
At low concentrations, synergy is the main type of interaction observed between DON and NIV

Alassane-Kpembi et al., 2017

Interaction between mycotoxins & others food contaminants

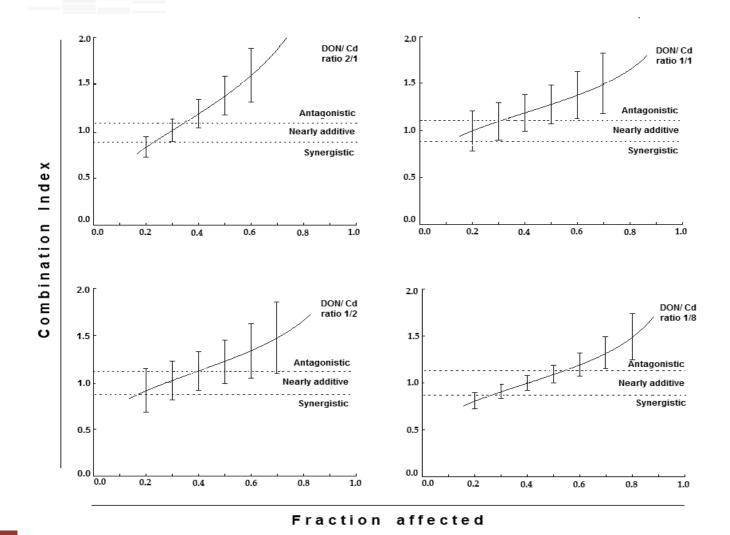





Mycotoxins and heavy metals, two important classes of contaminants

example of the interaction of DON and Cd

- Mycotoxins such as deoxynivalenol (DON) are frequent food contaminants
- Cadmium (Cd), a common and widespread toxic heavy metal,



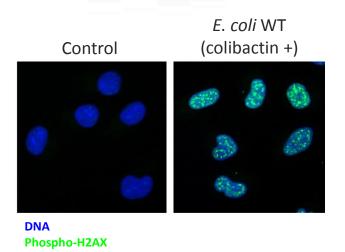
How do these contaminants interact in different organs

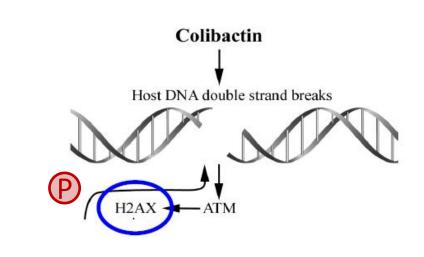
Interaction between deoxynivalenol & Cadmium in Caco-2 cells

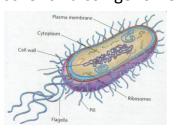
Interaction between deoxynivalenol and Cadmium: analysis on different cells lines

					Le <i>et al.,</i> submited
?	Cell ® type®			? ?	?
Fa?	HEK-2932	Caco-2? HL-60? ?	HepG2?	?	?
0.22	1.512-00.042).987±10.287 7 0.437±10.047 7 3	3.8011.071	? ?	Strong@antagonism@
0.32	1.272±0.112	1.13@10.22@ @ 0.65@10.04@ @ 1	1.732±10.022	?	Antagonism ²
0.42	1.187 0.087	1.287±10.187 _? 0.947±10.037 _? 1	1.17210.062	?	Moderate antagonism ?
0.52	1.122 0.072		0.95720.047	?	Slightantagonism?
0.62	1.072±00.062	1.647-10.197 7 1.877-10.087 7	0.82720.057	?	Nearly@additive?
0.72	1.02120.061		0.72210.052	?	Moderate Bynergism ?
0.82	0.987±10.047		0.64720.052	?	Synergism?

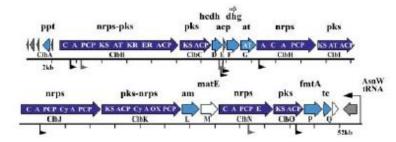
The interaction between DON and Cd is organ specific




Interaction between mycotoxins & bacterial toxins

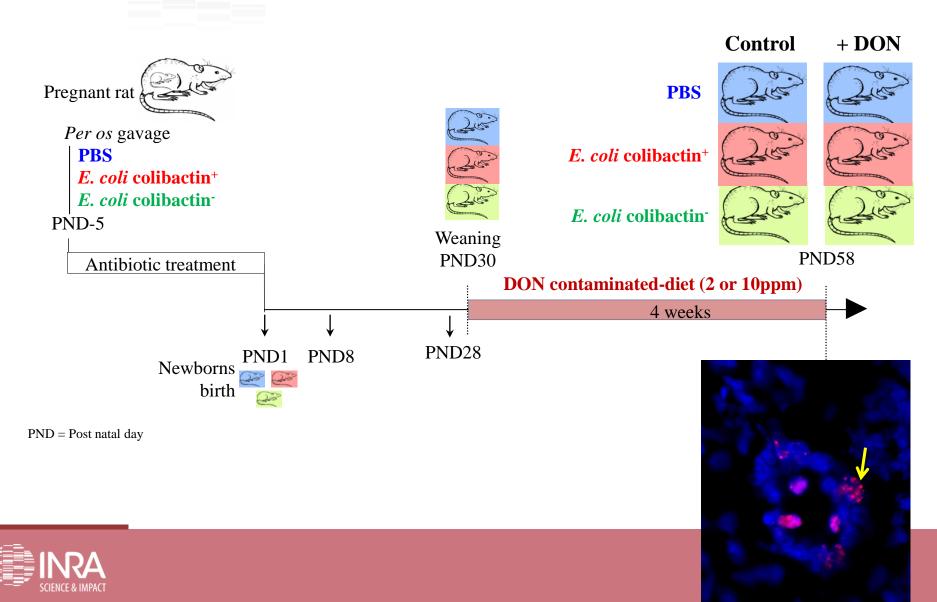


Colibactin, a genotoxin present in commensal and pathogenic *Escherichia coli*

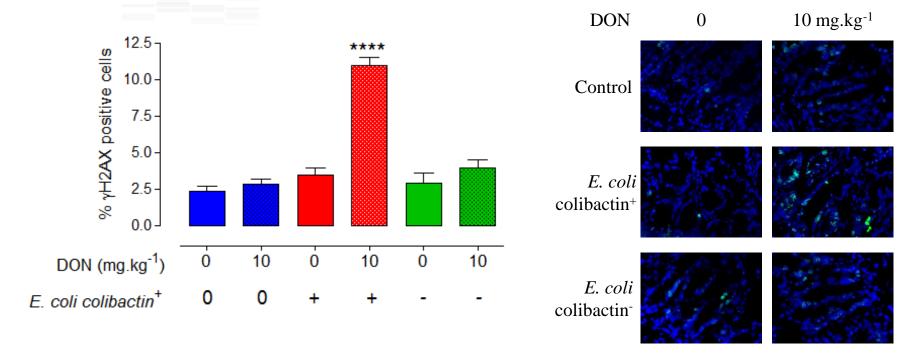


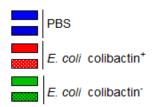
Escherichia coli genome

Pathogenicity island = pks island



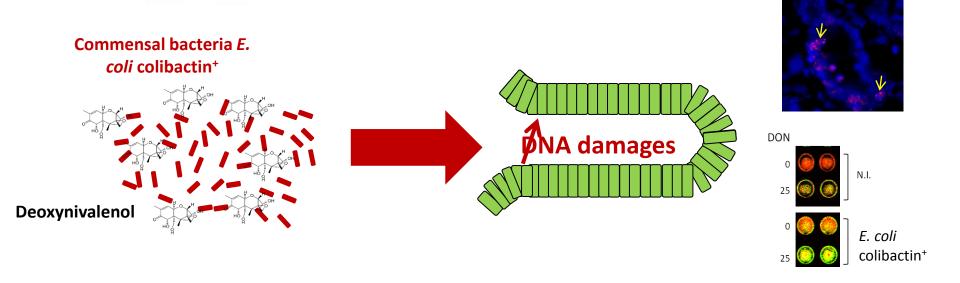
Up to 18% of infants and up to 25% of adults carried E. coli strains colibactin⁺.


Nougayrède et al., Science, 2006



In vivo interaction between DON and a colibactin, a bacterial genotoxin: protocol

In vivo interaction between DON and a colibactin, a bacterial genotoxin: results



Exacerbation of DNA double strand breaks observed in jejunal epithelial cells of adult animals and exposed to DON-contaminated diet is dependent of the colibactin production

Interaction between DON and a colibactin, a bacterial genotoxin: conclusion

DON exacerbates colibactin-induced DNA damages in intestinal epithelial cells

The microbiota modulates the genotoxic risk of animals exposed to DON-contaminated diet.

Take-home message

- Analysis of interactions requires a dose-effect response for the individual compounds and the mixtures.
- For Trichothecenes the type of interaction depends on
 - the toxins
 - their ratio
 - their concentration
- At low concentrations the main type of interaction observed is a synergy.
- The synergy may pose a significant threat to public health, as they occur in a range of doses considered as realistic in human gut.

Take-home message

Mycotoxins interact with other contaminants.

Analysis of the interaction between the mycotoxin DON and Cadmium indicate that the type of interaction is organ dependent

Mycotoxins interact with the microbiota.

The microbiota modulates the genotoxic risk of animals exposed to mycotoxin. DON exacerbates colibactin-induced DNA damages in intestinal epithelial cells

• The toxicity of mycotoxin should be considered in a global context taking into account the host, especially its microbiota, and other contaminants we are exposed to.

FUTURE CHALLENGES

- Need to extrapolate from in vitro to in vivo data (the explant model is an alternative)
- Need to include in the combined toxicity of all mycotoxins (regulated, emerging, masked/modified....)
- Need to consider not only mycotoxins but also other contaminants and the microbiota
- The toxicity of mycotoxin mixture remains a complex problem
- Regulation should evolve and take into account the cocontamination

The team

biosynthesis and toxicity of mycotoxins

Memorial Sloan-Kettering Cancer Center New-York: Dr. T.C. CHOU

Merci pour votre attention

AGRICULTURE

ENVIRONNEMENT

SFT, November 23-24, Paris